Hye Sung Kim¹, Wongi Woo¹, Adam Joseph Dugan², Jennifer Godden², Calvin Chao², Young Kwang Chae¹ ¹Northwestern University Feinberg School of Medicine, Chicago, IL, ²Tempus AI, Inc., Chicago, IL

INTRODUCTION

- Invasive mucinous adenocarcinoma (IMA), accounting for 2–10% of lung adenocarcinomas, has unique radiologic and pathologic features.
- IMA is still under-researched in terms of its comprehensive clinical and genetic characteristics in large, multicenter studies.
- Here, we assessed gene expression, tumor microenvironment as well as clinical outcomes compared to non-IMA.

METHODS

- Primary lung cancer cases were obtained from the Tempus database, categorized into either IMA or non-IMA, and compared by patient, clinical, pathologic, and molecular characteristics.
- The normalization of RNA-seq data involved computing transcripts per million (TPM), performing log2 transformations, and adjusting for assay and batch effects.
- Significantly up- and down-regulated genes were defined as false discovery rate q-values < 0.05 and $|\log 2(fold change)| > 0.5$.

SUMMARY

RESULTS

	IM
Clinical variables	N=6
Age, years	70 (63
Sex	
Female	356 (5
Male	343 (4
Smoking status	
Current/former	443 (6
Never smoker	167 (2
Unknown	89 (1
Stages	
Stage 1	207 (4
Stage 2	89 (1
Stage 3	110 (2
Stage 4	194 (4
First-line Treatment	
CTx	160 (5
CTx + ICI	85 (3
CTx + Biologic agent	4 (1
ICI	18 (6
Others	18 (6

Table 1. Cohort demographics. The IMA group
 were older (median age 70 vs. 68; p<0.001), had fewer smokers (63% vs. 73%; p<0.001), and more Hispanic/Latino individuals (4.3% vs. 2.7%; p=0.007). Additionally, IMA individuals were more likely to be diagnosed with earlystage cancer.

ACKNOWLEDGMENTS We thank Vanessa M. Nepomuceno, Ph.D. from the Tempus AI publications team for review

• IMA has low mutational burden (3.1 vs. 4.2 mut/Mb, p<0.001) as well as low neo-antigen level (7 vs. 9 neoantigens/Mb, p<0.001). • IMA has lower M1 and more M2 macrophages than non-IMA indicating an immunosuppressive and tumor-promoting environment. • High proportion of Treg and low CD8+ T cell in IMA could be related with limited benefit of immunotherapy.

ions, %	IMA N=543	Non-IMA N=15,007	p-value
	5.9 (4.4, 8.0)	4.5 (3.1, 7.3)	<0.001
hages	8 (6, 10)	9 (6, 13)	<0.001
hages	7.1 (5.0, 9.5)	6.3 (3.8, 8.9)	<0.001
	2.90 (2.33, 3.63)	2.80 (2.11, 3.62)	0.013
3	7.9 (6.2, 10.0)	8.4 (6.4, 10.8)	0.005
6	0.0 (0.0, 0.5)	0.0 (0.0, 1.3)	0.015
6	0.73 (0.19, 1.52)	0.87 (0.17, 2.02)	0.009
	5.87 (4.01, 7.77)	4.86 (3.08, 7.28)	<0.001

Figure 3. KM Survival Curves. (A) All treatment types, metastatic at primary diagnosis and (B) Chemotherapy (CTx) and immunotherapy, metastasis at