Impact of RAS and BRAF V600E mutations on tumor immune microenvironment and associated genomic alterations in patients with microsatellite instability (MSI) or DNA mismatch repair deficient (dMMR) colorectal cancers

¹Humanitas Cancer Center; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy, ²Levine Cancer Institute - Morehead, Charlotte, United States of America, ³Medical Affairs, Tempus AI, Inc., Chicago, United States of America, ⁴Medical Oncology department, Hopital Saint-Antoine, Paris, France, ⁵Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, Nc, United States of America, ⁶Personalis, Inc, Personalis, Inc, Menlo Park, United States of America, ⁷Medicine, UF -University of Florida Health, Gainesville, United States of America, ⁸Medical oncology Dept., Vall d'Hebron University Hospital, Barcelona, Spain, ⁹Medicine, Mayo Clinic, Rochester, MN, United States of America, ¹⁰Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia, ¹¹GI Medical Oncology Department, The University of Texas MD Anderson Cancer Center - Main Building, Houston, United States of America, 12Digestive Oncology Department, UZ Leuven - University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium, 13Oncology department, IOV – Istituto Oncologico Veneto IRCCS, Padova, Italy, 14Gastrointestinal medical oncology department, The University of Texas MD Anderson Cancer Center - Main Building, Houston, TX, United States of America, 15Levine Cancer Institute - Morehead, Levine Cancer Institute - Morehead, Charlotte, DC, United States of America

INTRODUCTION

- All international guidelines currently recommend routine testing of all CRC for MSI/dMMR for Lynch Syndrome screening, prognosis information and treatment guidance
- In metastatic setting, the analysis for all RAS and BRAF mutational status is recommended to select the most appropriate treatment choice
- The impact of RAS and BRAF mutations on prognosis and treatment effect in MSI/dMMR patients is not understood in either localized or metastatic setting

METHODS

Stage I-IV MSI/dMMR **Colorectal Cancer patients**

Retrospective, De-identified Clinico-molecular Real-World Data (RWD) of patients

Molecular profiling with

Tempus xT and xR assays*

*Tempus xT assay - DNA-seq of 595-648 genes at 500x coverage Tempus xR assay - whole-exome capture RNA-seq

- MSI status was determined by assessment of 44 or 239 loci by NGS
- dMMR was determined by Tempus IHC testing
- Tumor mutational burden (TMB), tumor neoantigen burden (TNB), PD-L1 positivity, immune infiltration, and canonical immune pathways (82 gene set signatures) were analyzed

Characteristic	Wildtype, N=229 ¹	<i>RAS^{mut},</i> N=100 ¹	BRAF V600E ^{mut} , N=119 ¹	p-value ²
Sex				0.003
Female	135 (59%)	46 (46%)	82 (69%)	
Male	94 (41%)	54 (54%)	37 (31%)	
Age, Median (Range)	66 (21, 85)	56 (23, 86)	73 (55, 86)	<0.001
Unknown	29	6	22	
Race				0.3
White	131 (57%)	49 (49%)	67 (56%)	
Black/African American	13 (5.7%)	5 (5.0%)	4 (3.4%)	
Asian	6 (2.6%)	0 (0%)	1 (0.8%)	
Other/Unknown	79 (34%)	46 (46%)	47 (39%)	
Ethnicity				0.005
Not Hispanic or Latino	79 (83%)	27 (73%)	37 (100%)	
Hispanic or Latino	16 (17%)	10 (27%)	0 (0%)	
Unknown	134	63	82	
Stage at Diagnosis				0.5
0	1 (0.6%)	0 (0%)	0 (0%)	
1-2	56 (34%)	19 (27%)	22 (26%)	
3-4	108 (65%)	51 (73%)	64 (74%)	
Unknown	64	30	33	
¹ n (%)				

² Fisher's exact test; Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Table 2. Overview of Cohort Demographics

RESULTS

Overview of molecular characteristics

Characteristic	wild-type,	RAS mutant,	B
	n = 229 ¹	n = 100 ¹	
MSI-H, n (%)	217 (96%)	98 (98%)	
Unknown	3	0	
TMB-H, n (%)	206 (96%)	95 (95%)	
Unknown	14	0	
NTB, Median (IQR)	16 (12, 21)	12 (9, 19)	
Unknown	33	2	
[†] PDL-1+, n (%)	24 (31%)	2 (5.9%)	
Unknown	152	66	
¹ n (%)			

 $^{
m 2}$ Fisher's exact test; Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Table 2. Most patients were MSI-High (MSI-H) and TMB-High (TMB-H). However, double wild-type and RAS^{mut} tumors were significantly more likely to be TMB-Low, although a small minority (~4-5%). In a reduced cohort, RAS^{mut} tumors had a significantly lower median neoantigen tumor mutation burden (NTB) than BRAFV600E^{mut} or wildtype tumors. RAS^{mut} tumors were both less likely to be PD-L1 positive.

RAS^{mut} and **BRAF V600E**^{mut} impact on CRCs tumor immune microenvironment (TiME)

Figure 2. The proportion of natural killer (NK) cells was significantly higher in BRAFV600E^{mut} compared to RAS^{mut} and wildtype tumors (median 21% vs. 15% vs.16%, p < 0.001). The proportion of cytotoxic CD8+ T cells was significantly lower in the RAS^{mut} compared to BRAFV600E^{mut} and wildtype tumors (median 6% vs. 8% vs. 9%, p=0.004). Both RAS^{mut}/BRAF V600E^{mut} tumors presented higher CD4+ helper T cell infiltrate compared with wildtype tumors (26% vs. 24% vs. 22%, p=0.037). Proportions of infiltrating immune cells were estimated through RNA-seq.

SUMMARY

The data discussed in this study suggest that MSI/dMMR CRC harboring RAS mutations are less immunogenic and appear to contain a lower tumor inflammatory profile of TIME than RAS^{wt} or BRAF V600E mutated tumors. Further analysis and validation are needed to confirm our data.

Presenting Author Declaration of Interest: No conflict of interest to declare Acknowledgements: We thank Amrita A. Iyer, Ph.D, from Scientific Communications at Tempus AI, Inc., for visualization and poster review

A.Puccini¹, D. Foureau², E. Mauer³, T. André⁴, W. Zhang⁵, S.M. El-Refai⁶, T. George⁷, J. Tabernero⁸, F. Sinicrope⁹, J. Tie¹⁰, S. Kopetz¹¹, E. Van Cutsem¹², S. Lonardi¹³, M.Overman¹⁴, M. Salem¹⁵

Figure 1. BRAF V600E mutated tumors showed a significant upregulation of mitotic and metabolic pathways compared with wild-type tumors. By contrast, RAS^{mut} tumors had an increased stemness (SHH pathway) and a widespread downregulation of inflammatory pathways compared with wild-type tumors. Pathway enrichment scores were computed through GSVA and compared between groups via differential expression analysis. Differentially expressed pathways (at 5% alpha level) are shown. Pathways differentially expressed after false discovery adjustment are also represented.

Immune checkpoint expression by RAS^{mut} & BRAFV600E^{mut} CRCs TiME

Figure 3. RAS^{mut} tumors tend to have lower PD1 expression compared with BRAFV600E^{mut} or wildtype tumors (median Log10 gene expression 2.06 vs. 2.12 vs. 2.15, p=0.058). BRAFV600E^{mut} tumors had higher LAG3 expression than RAS^{mut} and wildtype tumors (median Log10 gene expression 2.01 vs. 1.85 vs. 1.95, p=0.003). Immune checkpoint expression by CRC tumor immune microenvironment was estimated by RNA-seq.

Final Presentation Number - 580F

