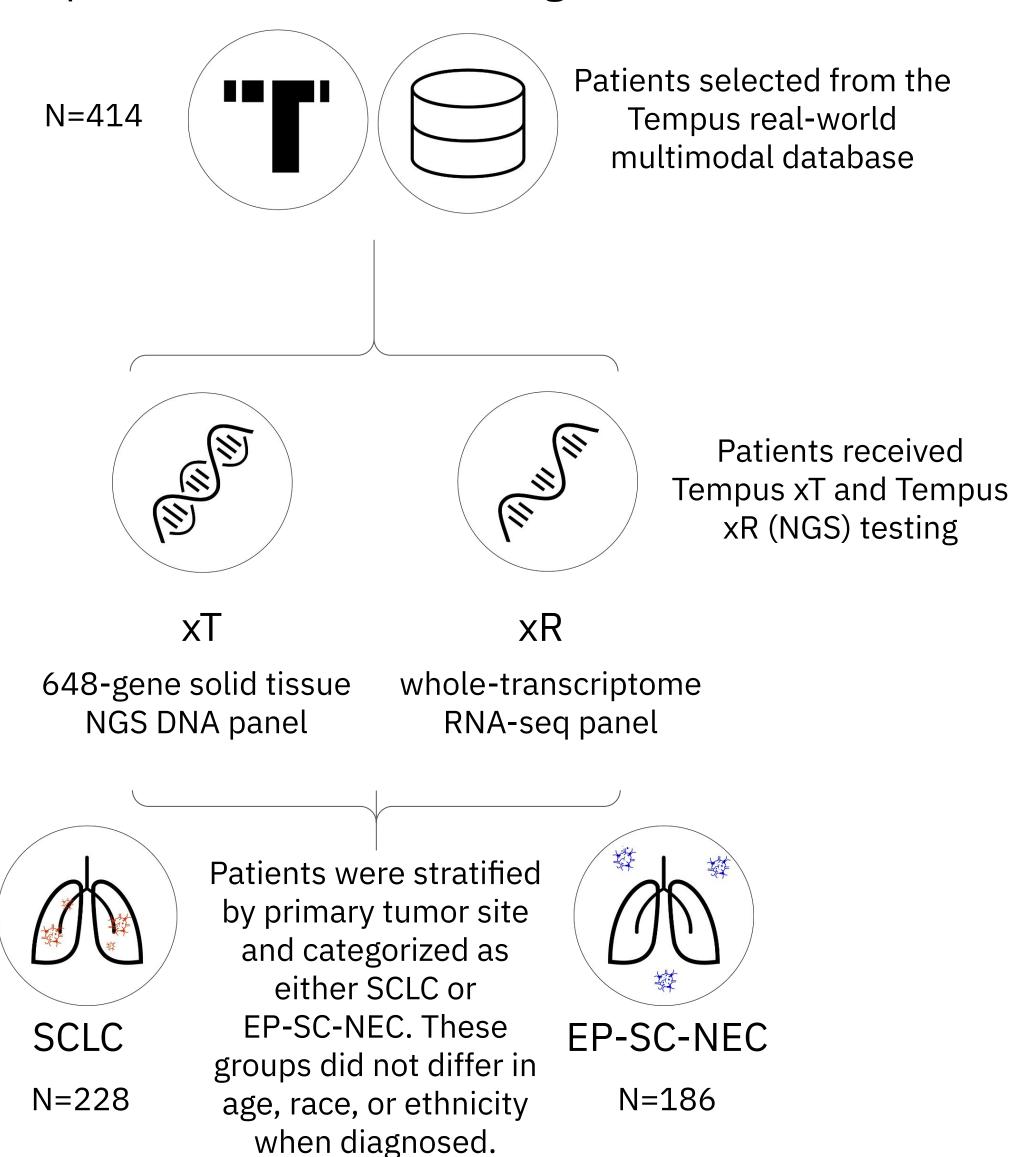
Mohamed, A^1 , Teslow, E^2 , Jaeger, E^2 , Stoppler, M^2 , Asa, SL^1 , Tirumani, SH^1 , Qiubai, Li^1 , Mahipal, A^1 , Bajor, D^1 , Chakrabarti, S^1 , Selfridge, JE^1 , Lumish, M^1 , Conces, M^1 , Hoehn, RS^1 , Winter, J^1 , Ammori, J¹, Hardacre, J¹, Henke, LE¹, Dowlati, A¹

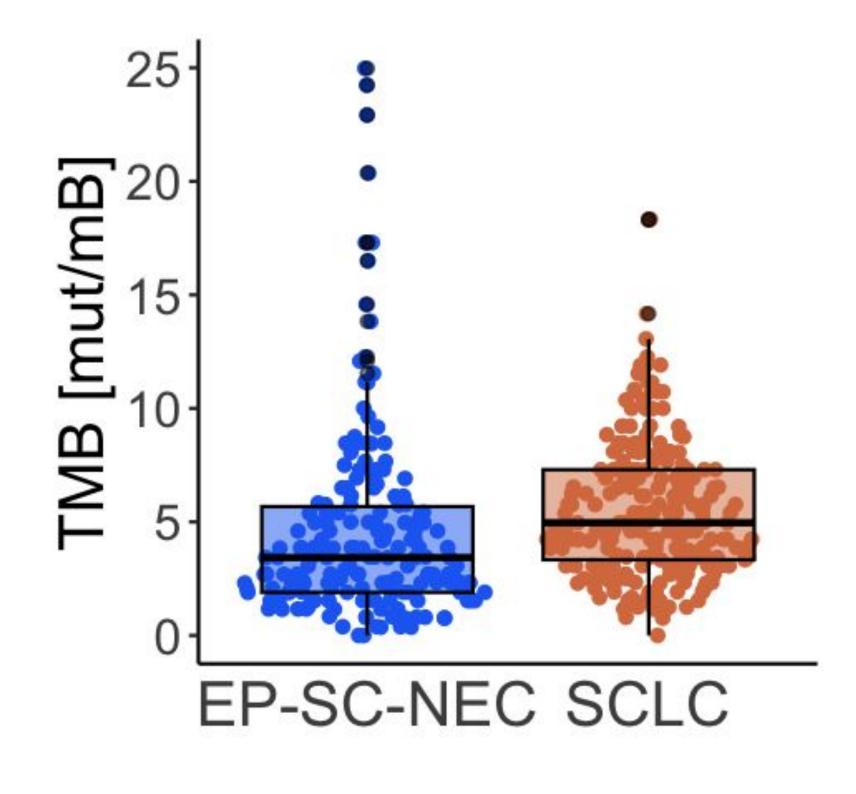

¹University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, ²Tempus AI, Inc., Chicago, IL

INTRODUCTION

Small cell neuroendocrine carcinomas (SC-NECs) are uncommon but aggressive tumors with poor prognosis. Although both small cell lung cancer extra-pulmonary small cell NEC (SCLC) and have similar (EP-SC-NEC) histological morphological characteristics, whether they are biologically distinct is still unknown. We assessed and compared the genomic profiles of SCLC and EP-SC-NECs to identify distinct mutations that may allow for more personalized therapeutic options.

METHODS

In this retrospective study, patients with a histological diagnosis of SC-NEC were selected from the de-identified Tempus real-world multimodal database and stratified by primary tumor site and categorized as SCLC or EP-SC-NEC. Patients received Tempus xT and xR NGS testing.

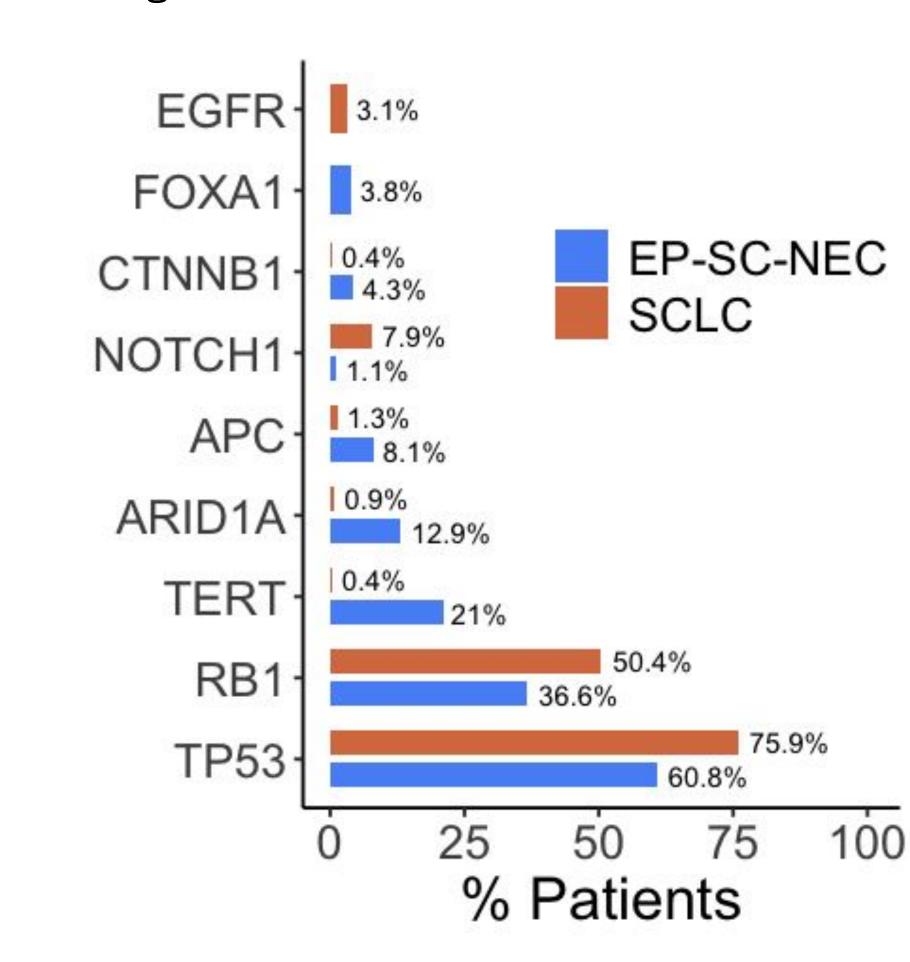

demographic/clinical characteristics and genomic data were described as N (%) or median (IQR), min, and max and compared between groups by Chi-squared/Fisher's Exact tests or Wilcoxon rank-sum tests. The prevalence of somatic mutations (SNVs, CNVs, and fusions) was compared similarly, with a rate correction for false-discovery multiple comparisons. Analyses were two-sided, with statistical significance evaluated at the 0.05 alpha level.

RESULTS

TMB and MSI between pulmonary and EP-SC NEC

SCLC samples had significantly higher median tumor mutational burden (TMB) than EP-SC-NEC samples (5.0 vs 3.4 mut/MB, p<0.001). MSI-H was rare in both groups (SCLC 0.4% vs EP-SC-NEC 2.7%, p=0.10).

	Overall,	EP-SC-NEC,	SCLC,	
Table 1.	$N = 414^{1}$	$N = 186^{1}$	$N = 228^{1}$	p-value ²
TMB (mut/Mb)				<0.001
Median (IQR)	4.2 (2.5, 6.9)	3.4 (1.9, 5.8)	5.0 (3.3, 7.3)	
Range	0.0, 103.0	0.0, 103.0	0.0, 73.0	
TMB (mut/Mb)				>0.9
<10	372 (90%)	167 (90%)	205 (90%)	
>=10	42 (10%)	19 (10%)	23 (10%)	
MSI				0.10
Stable	404 (99%)	181 (97%)	223 (100%)	
High	6 (1.5%)	5 (2.7%)	1 (0.4%)	
Unknown	4	0	4	
1 p (0/2)	–		–	



(y-axis truncated at 25 mut/mB)

Somatic short variant alterations between SCLC and EP-SC-NEC

There were significant differences in somatic single nucleotide variants (SNVs) between SCLC and EP-SC-NEC. TP53, RB1, EGFR, and NOTCH1 mutations were more common and TERT, ARID1A, APC, FOXA1, and CTNNB1 mutations were less common in SCLC (q<0.05). SCLC had significantly fewer CCNE1 amplifications than EP-SC-NEC. Pathogenic fusions were more frequent in EP-SC-NEC vs SCLC (q<0.001), with 24% of EP-SC-NEC fusions being TMPRSS2-ERG.

Table 2.	EP-SC-NEC , N = 186 ¹	SCLC , N = 228 ¹	p-value ²	q-value ³
TERT	39 (21%)	1 (0.4%)	<0.001	<0.001
ARID1A	24 (13%)	2 (0.9%)	<0.001	<0.001
TP53	113 (61%)	173 (76%)	<0.001	0.006
APC	15 (8.1%)	3 (1.3%)	<0.001	0.006
NOTCH1	2 (1.1%)	18 (7.9%)	0.001	0.006
FOXA1	7 (3.8%)	0 (0%)	0.003	0.014
RB1	68 (37%)	115 (50%)	0.005	0.016
CTNNB1	8 (4.3%)	1 (0.4%)	0.013	0.038
EGFR	0 (0%)	7 (3.1%)	0.018	0.049

SUMMARY

- Despite the histological and morphological overlap between SCLC and EP-SC-NECs, our data revealed heterogeneous molecular characteristics between both groups
- These distinct molecular signatures could impact therapeutic decisions for SC-NEC according to their site of origin

¹ n (%)

² Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test

² Pearson's Chi-squared test; Fisher's exact test

³ False discovery rate correction for multiple testing