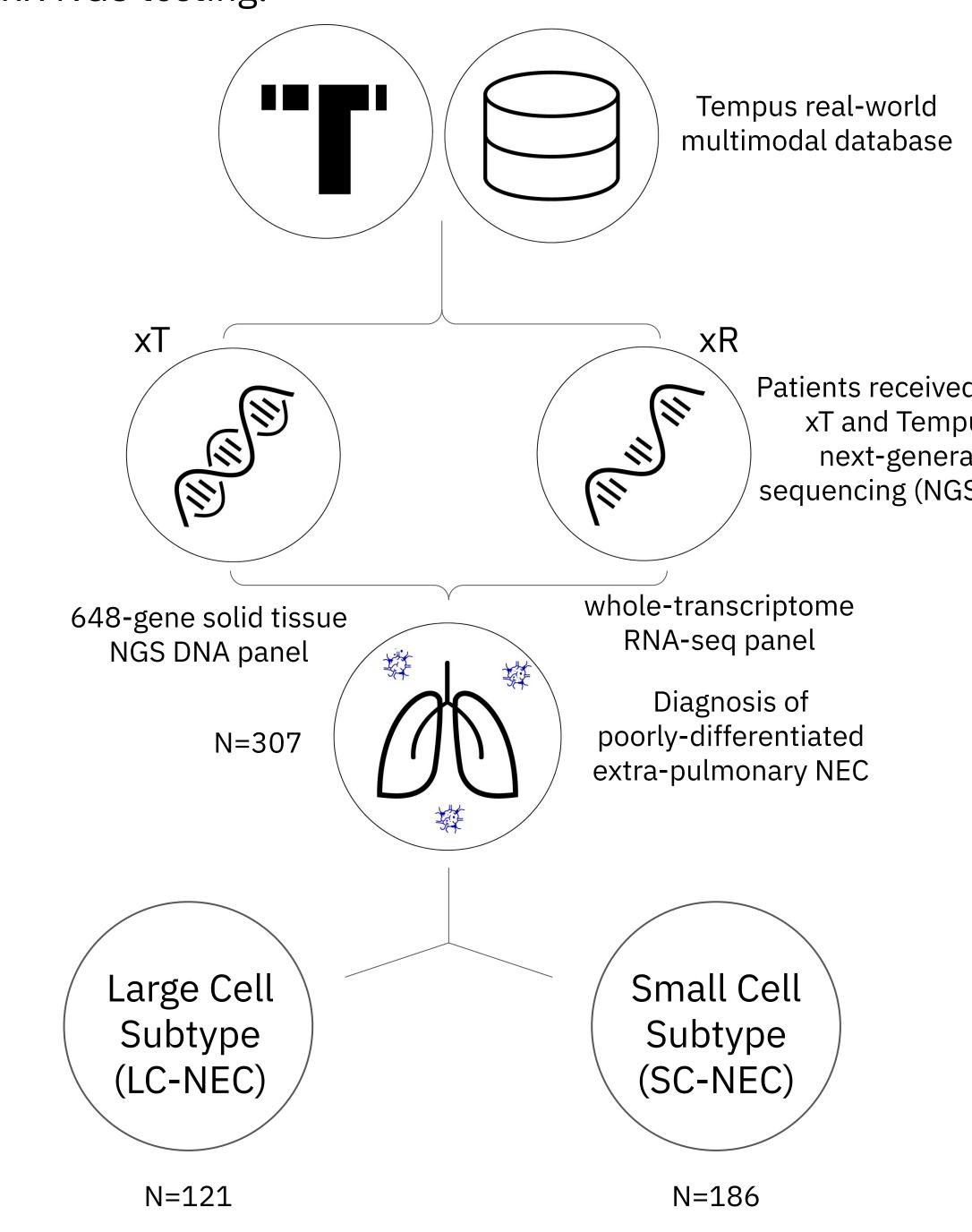
Uncovering genomic differences between small and large cell extra-pulmonary neuroendocrine carcinomas


Mohamed, A¹, Teslow, E², Jaeger, E², Stoppler, M², Asa, SL¹, Tirumani, SH¹, Qiubai, Li¹, Mahipal, A¹, Bajor, D¹, Chakrabarti, S¹, Selfridge, JE¹, Conces, M¹, Lumish, M¹, Hoehn, RS¹, Winter, J¹, Ammori, J¹, Hardacre, J¹, Henke, LE¹, Dowlati, A¹ ¹ University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, ² Tempus AI, Inc., Chicago, IL

INTRODUCTION

Extra-pulmonary neuroendocrine carcinomas (EP-NECs) ai rare and aggressive cancers that include two morphologic subtypes: large cell NEC (LC-NEC) and small cell NE Although they are treated with simila (SC-NEC). chemotherapy regimens, they are distinct diseases, and the genomic profiles have not been compared. We investigate the genomic profile of the extra-pulmonary LC-NEC ar SC-NEC to identify mutations that could enable mor personalized therapy.

METHODS

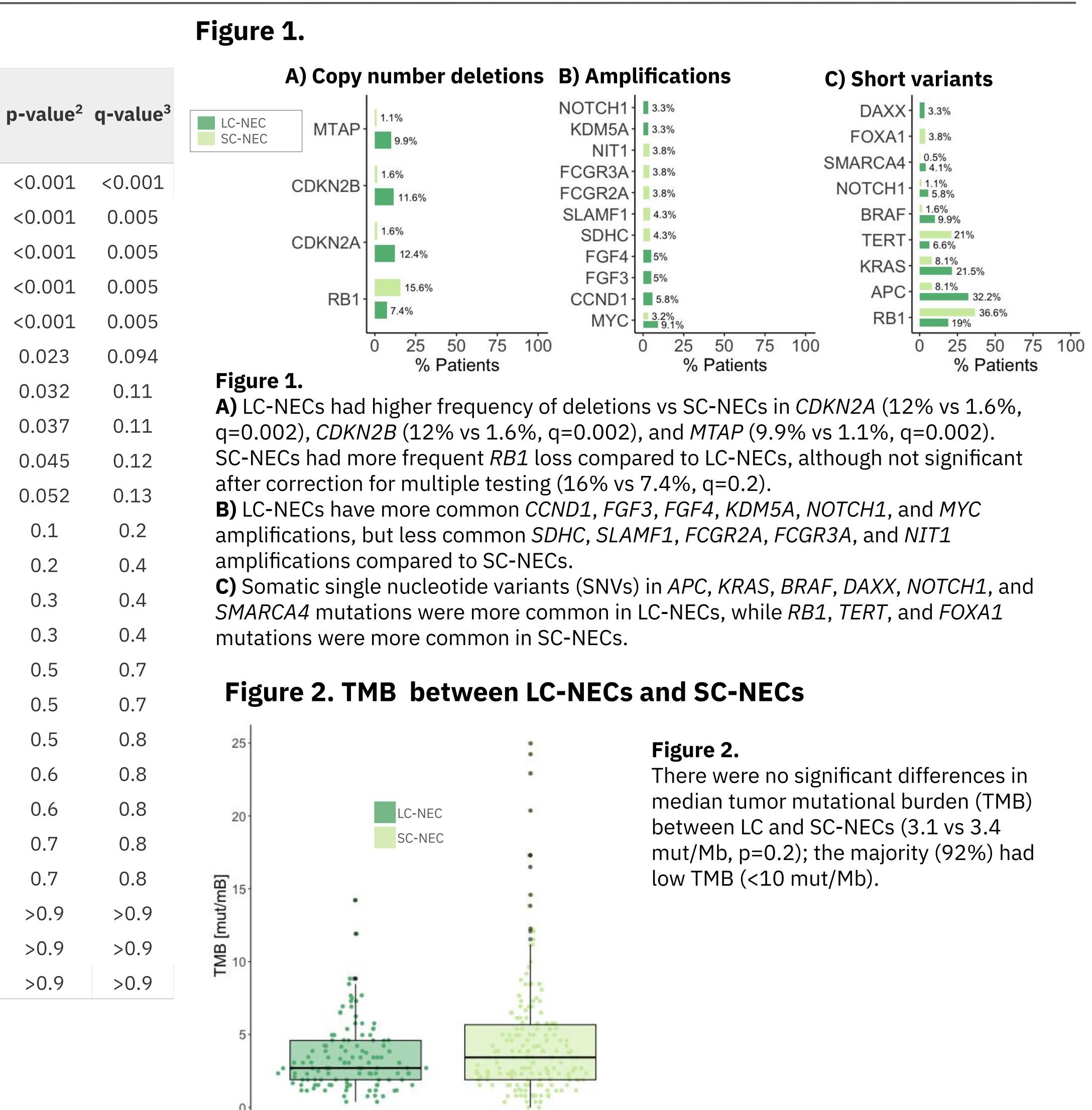
In this retrospective study, Patients diagnosed with poc differentiated extra-pulmonary NECs (LC-NEC and SC-N subtypes) were selected from the de-identified Temp real-world multimodal database. Patients received Tempus and xR NGS testing.

Demographic/clinical characteristics and genomic data were described as N (%) or median (IQR), min, and max and compared between subgroups by Chi-squared/Fisher's Exact tests or Wilcoxon rank-sum tests. The prevalence of somatic mutations (SNVs, CNVs, and fusions) was described and compared similarly, with a false-discovery rate correction for multiple comparisons. Analyses were two-sided, with statistical significance evaluated at the 0.05 alpha level.

ACKNOWLEDGMENTS

We thank Dana DeSantis from the Tempus Science Communications team for poster development.

	RESULTS		
are cal EC ilar ieir ied ind ore	Table 1.		
	Characteristic	LC-NEC, N = 121 ¹	SC-NEC, N = 186 ¹
	APC	39 (32%)	15 (8.1%)
	RB1	23 (19%)	68 (37%)
	KRAS	26 (21%)	15 (8.1%)
	TERT	8 (6.6%)	39 (21%)
orly NEC npus s xT	BRAF	12 (9.9%)	3 (1.6%)
	DAXX	4 (3.3%)	0 (0%)
	NOTCH1	7 (5.8%)	2 (1.1%)
	SMARCA4	5 (4.1%)	1 (0.5%)
	FOXA1	0 (0%)	7 (3.8%)
	KMT2D	5 (4.1%)	19 (10%)
	PTEN	5 (4.1%)	17 (9.1%)
	FBXW7	2 (1.7%)	9 (4.8%)
	CDKN1A	1 (0.8%)	6 (3.2%)
	ZFHX3	1 (0.8%)	6 (3.2%)
ed Tempus pus xR ration GS) testing	ARID1A	19 (16%)	24 (13%)
	ARID1B	2 (1.7%)	7 (3.8%)
	CTNNB1	3 (2.5%)	8 (4.3%)
	TP53	70 (58%)	113 (61%)
	PIK3CA	6 (5.0%)	12 (6.5%)
	CREBBP	8 (6.6%)	10 (5.4%)
	BRCA2	4 (3.3%)	4 (2.2%)
	KDM6A	4 (3.3%)	6 (3.2%)
	KMT2C	4 (3.3%)	6 (3.2%)
	PIK3R1	3 (2.5%)	6 (3.2%)


1 n (%)

2 Pearson's Chi-squared test; Fisher's exact test

3 False discovery rate correction for multiple testing

SUMMARY

- subtypes.
- LC-NECs.

• Our results demonstrated that EP-NECs display a broad pattern of genomic alterations according to their histological

• These distinct molecular signatures could impact the development of future precision therapeutics for SC-NECs and

Poster # B18

