Intrinsic Subtype Distributions Across Inherited Breast Cancer Genes: An Opportunity to Refine Treatment

T. Pal¹; S. Reid¹; E. Teslow²; M. Huang²; B. Yilma²; S. Fragkogianni²; T. Ahmed²; J. Whisenant¹; A. Weidner¹; P. Rajagopal³; M. Stoppler²; C. Chao²; A. Kurian⁴; A. Arafa⁵; E. Antonarakis⁵; S. Yadav⁶; F. Couch⁶ ¹Vanderbilt-Ingram Cancer Ctr., Nashville, TN; ²Tempus AI, Chicago, IL; ³Natl. Cancer Ctr., Palo Alto, CA; ⁵Univ. of Minnesota Masonic Cancer Ctr., Minneapolis, MN; ⁶Mayo Clinic, Rochester, MN

INTRODUCTION

- 5-10% of breast cancers are inherited, primarily due to germline pathogenic/likely pathogenic variants (GPVs) in inherited DNA repair pathway genes, such as BRCA1, BRCA2, PALB2, ATM and CHEK2.
- We compared intrinsic breast cancer subtypes among females with GPVs in these genes and conduct subgroup analyses among hormone receptor (HR) subtypes including HR positive (estrogen and/or progesterone receptor positive), HER2 negative (HER2-), or HR-/HER2- breast cancers compared to sporadic breast cancers.

METHODS

Breast Cancer Patients

- Inclusion Criteria:
 - GPVs in BRCA1, BRCA2, PALB2, ATM or CHEK2 detected incidentally the xT assay or a validated germline test
 - Tumor testing including whole transcriptome RNA expression analysis.
- Exclusion Criteria:
 - GPV in more than one of the above-mentioned genes

Molecular Subtyping:

• PAM50 subtyping conducted to determine intrinsic subtypes (i.e., Luminal A, Luminal B, Basal, HER2-enriched).

<u>Analyses</u>:

- Intrinsic subtype distribution was compared across the 5 inherited breast cancer genes and to sporadic cases.
 - In the overall cohort
 - In the subgroup with HR+/HER2- disease

*Tempus xT assay - a targeted panel that detects single nucleotide variants, insertions and/or deletions, and copy number variants in 598-648 genes, as well as chromosomal rearrangements in 22 genes with high sensitivity and specificity.

** Statistical Analysis - Statistical comparisons were conducted using the Kruskal-Wallis rank sum test for continuous variables and the Pearson's Chi-squared test or Fisher's exact test for categorical variables, with false discovery rate (FDR) correction for multiple testing applied where appropriate.

Age

Race Whi Blac Oth Asia Unk

Stage Ear Lat

Intrin

Molecular profiling

with

Tempus xT tumor

normal matched or

tumor-only assay*

Lum Lum Basa HER Unk

Rece HR-HR-HER

Unk

> Luminal A subtype encompassed a higher proportion in ATM (62%) and CHEK2 (75%) carriers, compared to PALB2 (53%), BRCA2 (50%) and BRCA1 (11%) carriers.

RESULTS

Table 1: Demographic and Clinical Characteristics of the Study Population											
	Overall	Sporadic	BRCA1	BRCA2	<i>PALB2</i>	ATM	<i>CHEK2</i>				
	N=4,988	N=4,553	N=98	N=126	N=74	N=54	N=83				
at Diagnosis, Median (IQR)	56 (47 <i>,</i> 65)	57 (47 <i>,</i> 65)	47 (37, 58)	49 (39 <i>,</i> 58)	53 (46, 60)	52 (42 <i>,</i> 60)	57 (49 <i>,</i> 6				
te	2,532 (73%)	2,277 (73%)	54 (68%)	62 (67%)	51 (82%)	32 (84%)	56 (89%				
k	487 (14%)	447 (14%)	14 (18%)	17 (18%)	3 (4.8%)	4 (11%)	2 (3.2%				
er	294 (8.5%)	269 (8.6%)	7 (8.9%)	8 (8.6%)	5 (8.1%)	1 (2.6%)	4 (6.3%				
n	161 (4.6%)	146 (4.7%)	4 (5.1%)	6 (6.5%)	3 (4.8%)	1 (2.6%)	1 (1.6%				
<i>nown</i>	<i>1,514</i>	<i>1,414</i>	<i>19</i>	<i>33</i>	<i>12</i>	<i>16</i>	<i>20</i>				
e y (Stage I-III) e (Stage IV)	942 (19%) 4,046 (81%)	753 (16.5%) 3,800 (83.5%)	50 (51%) 48 (49%)	45 (36%) 81 (64%)	44 (59%) 30 (41%)	15 (28%) 39 (72%)	35 (42% 48 (58%				
nsic Subtype	1,810 (47%)	1,631 (46%)	9 (11%)	50 (50%)	34 (53%)	29 (62%)	57 (75%				
ninal A	669 (17%)	602 (17%)	9 (11%)	21 (21%)	13 (20%)	13 (28%)	11 (14%				
ninal B	1,006 (26%)	895 (25%)	62 (75%)	24 (24%)	16 (25%)	3 (6.4%)	6 (7.9%				
al	404 (10%)	391 (11%)	3 (3.6%)	5 (5%)	1 (1.6%)	2 (4.3%)	2 (2.6%				
R2-enriched	<i>1,099</i>	<i>1,034</i>	<i>15</i>	<i>26</i>	<i>10</i>	7	7				
ptor Status	2,500 (64%)	2,271 (64.6%)	26 (30%)	69 (68%)	48 (73%)	31 (76%)	50 (77%				
-/HER2-	855 (22%)	757 (21.5%)	56 (65%)	24 (24%)	13 (20%)	1 (2%)	3 (5%)				
/HER2-	57 (14%)	489 (13.9%)	4 (5%)	8 (8%)	5 (8%)	9 (22%)	12 (18%				
&2+	<i>1,112</i>	<i>1,036</i>	<i>12</i>	<i>25</i>	<i>8</i>	<i>13</i>	<i>18</i>				

Figure 1: Distribution of Subtypes Across Breast Cancers

• As shown in **Figure 1**, the distribution of the four intrinsic subtypes showed: > Basal subtype encompassed a majority in *BRCA1* carriers (75%) and was less common in ATM (6.4%) and CHEK2 (7.9%) carriers.

• As shown in **Table 2**, among the HR+ subgroup, Basal and Luminal B subtypes were over-represented among *BRCA1* tumors (45%; n=10 and 32%; n=7, respectively) compared to sporadic tumors (11%; n=207 and 22%; n=398 respectively). Among the HR+ Luminal A subtype, CHEK2 tumors were overrepresented (80%; n=37) while *BRCA1* tumors were under-represented (23%; n=5), compared to sporadic tumors (60%; n=1093).

Table 2: Distribution of Subtypes in HR+ Breast Cancers

	BRCA1 N=22	BRCA2 N=58	PALB2 N=43	ATM N=29	<i>CHEK2</i> N=46	Spor N=1,
Intrinsic Subtype						
Luminal A	5 (23%)	39 (67%)	28 (65%)	19 (66%)	37 (80%)	1,093
Luminal B	7 (32%)	12 (21%)	11 (26%)	9 (31%)	7 (15%)	398 (2
Basal	10 (45%)	5 (8.6%)	4 (9.3%)	1 (3.4%)	2 (4.3%)	207 (2
HER2-enriched	-	2 (3.4%)	-	-	-	115 (6

Figure 2: Distribution of Subtypes by Receptor Status

RESULTS

• As shown in **Figure 4**, triple-negative breast cancers (HR-/HER2-) were overrepresented in *BRCA1* carriers (65%) while HR+/HER2- breast cancers were overrepresented in BRCA2, PALB2, ATM, and CHEK2 carriers (68%, 73%, 76%, and 77%, respectively).

Figure 4: Distribution of Receptor Status Across **Breast Cancers**

CONCLUSIONS

- Our findings demonstrate significant differences in the distribution of intrinsic subtypes across inherited breast cancer genes, with:
 - Basal subtype seen predominantly in BRCA1 carriers and under-represented in both ATM and CHEK2 carriers.
 - Among the HR+ subgroup, the Basal subtype remained over-represented in *BRCA1* carriers and the Luminal B subtype was also over-represented.
- Identification of non-Luminal A tumors based on intrinsic subtyping may be of both prognostic and predictive importance, with consideration of more aggressive treatment.
- Consequently, our findings highlight the importance of intrinsic tumor subtyping to identify aggressive tumors over-represented among females with inherited breast cancer due to BRCA1, BRCA2, and PALB2 GPVs.

FUTURE DIRECTIONS

- Analysis of somatic mutation profiles underway
- Survival analysis by gene/subtype underway

ACKNOWLEDGMENTS

Supported in part by ASCO CDA (Sonya Reid); Komen Foundation SAC210105, NCI R01CA204819 (Tuya Pal), & R35CA253187 (Fergus Couch)

- adic
- (60%) 22%) 11%) 6.3%)