Impact of timing of real-world CT imaging on cost-effectiveness of a molecular biomarker for treatment response monitoring of immunotherapy

Zach Rivers¹, Charu Aggarwal², Marc Matrana³, Akash Mitra¹, Halla Nimeiri¹, Rotem Ben-Shachar¹, Sheetal M. Kircher³ ¹ Tempus AI, Inc., Chicago, IL ² University of Pennsylvania, Philadelphia, PA ³ Ochsner Health, New Orleans, LA ⁴Northwestern University, Evanston, IL

INTRODUCTION

- Studies have demonstrated that dynamic molecular biomarkers for treatment response monitoring (TRM) of immune checkpoint inhibitors (ICI) can predict clinical outcomes.
- However, there is little data on when a molecular biomarker is best integrated into clinical practice based on timing of Computed Tomography (CT) imaging.
- We characterized real-world (RW) imaging-based treatment response monitoring in a cohort of advanced pan-cancer patients treated with ICI and then modeled the impact of these patterns on the clinical utility and cost-effectiveness of a molecular biomarker for TRM compared to imaging.

METHODS

- We analyzed CT scan frequency in linked Tempus AI clinicogenomic and Komodo Health claims databases.
- Inclusion Criteria:
- Diagnosed with Stage 3B, 3C or 4 cancer
- Received first line ICI +/- chemotherapy for \geq 60 days
- rightarrow Received ≥ 2 CT scans.
- We assume that all treatment decisions occur after CT imaging; in the intervention group, molecular non-responders switch to chemotherapy and molecular responders remain on ICI; in the control group, treatment switching decision is determined by the imaging result only.
- Median CT scan interval difference by treatment and cancer type was tested using the Kruskal-Wallis test.
- We updated a prior microsimulation model to incorporate these real-world data, calculating total treatment and molecular testing costs from Medicare's perspective.

	Time from Therapy Start to First CT Scar			an Time from First CT Scan to Second CT Scan			
Cancer Type	ICI-Chemo	ICI	p-value	ICI-Chemo	ICI	p-value	
NSCLC	58 Days (N=1,570)	71 Days (N=1,604)	<0.001	65 Days (N=1,570)	81 Days (N=1,604)	<0.001	
Breast	72 Days (N=224)	55 Days (N=50)	0.2	71 Days (N=224)	64 Days (N=50)	0.5	
Colorectal	55 Days (N=79)	71 Days (N=211)	0.004	60 Days (N=79)	78 Days (N=211)	0.001	
Prostate	57 Days (N=16)	59 Days (N=20)	0.7	49 Days (N=16)	65 Days (N=20)	0.8	
SCLC	48 Days (N=204)	63 Days (N=28)	0.053	59 Days (N=204)	70 Days (N=28)	0.5	
Melanoma	56 Days (N=39)	80 Days (N=228)	0.069	62 Days (N=39)	77 Days (N=228)	0.2	
p-value*	<0.0001	0.051		0.028	0.027		

RESULTS

Table 1. Simulation modeling revealed that intervention patients receiving earlier scans (range: 6-11 weeks) had greater per-patient total cost savings (\$4,700 to \$7,100) and longer weeks of inappropriate therapy avoided (4.3-5.8) over a 24 week period compared to the control patients. *p-values for within treatment difference by cancer type.

ACKNOWLEDGMENTS

We thank Vanessa M. Nepomuceno, Ph.D. from the Tempus Science Communications team for poster development.

SUMMARY

- cancer subtypes.
- occurs at more frequent intervals than others.

• Utilization of imaging for treatment response monitoring varies across cancer types and therapy. • Despite the heterogeneity in rw-imaging data, xM for TRM in conjunction with imaging remained cost-saving compared to CT imaging alone across all

• The greatest cost savings and weeks of inappropriate therapy avoided was seen in advanced SCLC treated with ICI-chemotherapy, where rw-imaging

Figure 2. CT scan frequency analysis. Scan interval one was calculated as the time between an index date of first claim for ICI +/- chemotherapy that occured after stage 3B+ diagnosis and first claim for CT scan that occured greater than 7 days after treatment start. Scan interval 2 was calculated as the time between CT Scan 1 and CT Scan 2.

Cancer Site Breast Colorectal Melanoma NSCLC Prostate SCLC

Figure 3. Simulation modeling revealed that intervention patients receiving earlier scans (range: 6-11 weeks) had greater per-patient total cost savings (\$4,700 to \$7,100) and longer weeks of inappropriate therapy avoided (4.3-5.8) over a 24 week period compared to the control patients.