PPARG AMPLIFICATION IS ASSOCIATED WITH LACK OF RESPONSE TO ANTI-PD1 IN MUSCLE-INVASIVE UROTHELIAL CANCER

Evisa Gjini, Stefan Kirov, Michaela Bowden Flare Therapeutics, Cambridge, Massachusetts

Abstract #537

BACKGROUND

Although immune checkpoint inhibitor (ICI) approval has changed the treatment landscape of metastatic urothelial carcinoma, approximately 70% of patients succumb to refractory or acquired resistance¹.

Dysregulation of PPARG signaling is linked to tumor development in urothelial cancer, where PPARG signaling is essential to cell lineage determination in the luminal layers of the normal urothelium^{2,3}. Recurrent genetic alterations in *PPARG*, as well as hotspot mutations in its obligate heterodimerretinoid X receptor alpha (*RXRA*) in Muscle-Invasive Urothelial Cancer (MIUC), are characteristics of the luminal subtype, which responds poorly to ICI⁴.

Tumor-cell intrinsic upregulation of PPARG is associated with lack of response to anti-PD1 and an immunosuppressive tumor-microenvironment (TME), characterized by anti-inflammatory cytokine signaling, decreased T-cell infiltration, T-cell dysfunction and increased myeloid-derived suppressive cells^{4,5}.

RESULTS

The MIUC cohort is composed of 1393 patients. Seventy-three percent of the patients are male, while 23% are females (Figure 1A). The distribution of race shows that approximately half of the patients are white (55.3%; Figure 1B). In addition, the cohort is enriched for stage 4 biopsies (67.8%), followed by stage 3 (13.3%) and stage 2 (6.9%) (Figure 1C). The biopsies assessed for PPARG mRNA expression and PPARG genetic alterations are collected from different sites, such as urinary tract tissues (39.3%), lymphatic and adrenal gland (15.5%), kidney (9.5%), etc (Figure 1D).

METHODS

Analyses were performed on real-world data from 1393 MIUC patients. Tumor samples were sequenced using the Tempus xT assay (DNA-seq of 648 genes at 500x coverage) and RNA-seq (n = 1389 with RNA, n = 1365 with DNA). Within the dataset, 275 patients received anti-PD-1 therapy (248 patients received Pembrolizumab and 27 patients received Nivolumab). Pre-anti-PD1 treatment tissues were analyzed (cut-point of \leq 90 days from start-of-treatment to date-of-tissue-collection). PD-L1 expression was assessed using the PD-L1 IHC 22C3 PharmDx assay (Combined Proportion Score [CPS] cut-off of 10%). Gene expression values were normalized by transcripts-per-million (TPM). Immune infiltration was quantified with mcpCounter package in R. Patients were binned in "Amplified" (AMP) vs "Non-Amplified" (non-AMP) groups by *PPARG* copy number (CN) cut-off of 3. Kaplan-Meier analyses were performed based on Real-World Progression Free Survival (rw-PFS) Time-to-Next Treatment (TTNT) and *PPARG* amplification.

FIGURE 2. Amplification of PPARG is Associated with Higher Levels of PPARG Expression

References

- *Gut* Published Online First: doi: 10.1136/gutjnl-2022-328364.
- Advanced Urothelial Cancer (UC) Tumors. 2022 EORTC-NCI-AACR.

Overall, the median mRNA expression level of *PPARG* in this cohort is 7.65 (Figure 2A). The median mRNA expression level of *PPARG* was significantly higher in the PPARG AMP group compared to PPARG non-AMP group (7.39 Log2[TPM+1] vs 8.81 Log2[TPM+1]; p <2.2e-16) [4] (Figure 2B)⁶.

1. Lopez-Beltran A, et al. Immune checkpoint inhibitors for the treatment of bladder cancer. *Cancers*. 2021; 13(1), 131-147.

2. Liu C, et al. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. *Nat Commun.* 2019; 10: 4589. 3. Tate T, et al. Pparg signaling controls bladder cancer subtype and immune exclusion. *Nat Commun*. 2021; 12: 6160.

4. Galsky MD, et al. Fibroblast growth factor receptor 3 (FGFR3), peroxisome proliferator-activated receptor gamma (PPARg), and outcomes with nivolumab (nivo) in metastatic urothelial cancer (UC). JCO. 2018; 36:6, 511-511.

5. Xiong Z, et al. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. 2023;

6. Motley W, et al. Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Status Defines the Luminal Lineage in Molecular Profiles of

7. Sims R, et al. Discovery of FX-909, a first-in-class inverse agonist of the peroxisome proliferator-activated receptor gamma (PPARG) lineage transcription factor, to treat patients with the luminal subtype of advanced urothelial cancer (UC). 2023; AACR, Orlando, Florida.

FIGURE 3. Higher PPARG Expression is Negatively Correlated with PDL1 Expression in MIUC

PPARG mRNA expression is negatively correlated with PDL1 protein expression, which was assessed by CPS (R = -0.3, p-value < 0.001). PPARG expression was also higher in the PD-L1-negative tumors (CPS <10) compared to PDL1-positive tumors (7.96 Log2 [TPM+1] vs 6.86 Log2 [TPM+1]; p <0.001).

In MIUC tumors, high PPARG mRNA expression is negatively correlated with expression of immune cells (Table 1). Moreover, PPARG AMP tumors exhibited a cold immune-phenotype compared to the PPARG non-AMP tumors, associated with lower CD8+ T-cell infiltration signature score (3.99 Log2[TPM+1] vs 5.73 Log2[TPM+1]; p = 0.0025) and lower expression of other immune cells (Figure 4, Table 2).

PDL1 CPS Binarized (cutoff \geq 10)

TABLE 1. PPARG Expression Negatively Correlates with Tumor Immune Cell Infiltration

Immune Signatures	Correlation Coefficient (R) with PPARG mRNA Expression	P-Value (Wilcoxon test)	
CD8+T-Cells	-0.17	<0.001	
Cytotoxic Lymphocytes	-0.29	<0.001	
Natural Killer (NK) Cells	-0.19	<0.001	
Monocytes	-0.35	<0.001	
Myeloid Dendritic Cells	-0.14	<0.001	

TABLE 2. PPARG Amplification Status and Immune Cell Score

	Median RNA Score (Log2[TPM+1])		
Immune Signature	PPARG AMP (CN >3)	PPARG Non-AMP (CN <3)	(Wilcoxon test)
Cytotoxic Lymphocytes	1.99	2.65	<0.001
Natural Killer (NK) Cells	0.62	0.76	<0.001
Monocytes	25.4	33.78	<0.001
Myeloid Dendritic Cells	2.5	3.22	<0.001

FIGURE 5. PPARG Amplification is Significantly Associated with Shorter rwPFS to anti-PD1

Survival analysis in patients treated with Pembrolizumab (90.5%) and Nivolumab (9.5%) showed significantly shorter rwPFS (p = 0.034) for patients with PPARG AMP (n = 41) compared to the non-AMP group (n = 222) (Figure 5A). Similarly, patients with PPARG AMP and treated with anti-PD1 showed a trend for shorter TTNT (p = 0.054) compared to the non-AMP group (Figure 5B).

CONCLUSION

PPARG overexpression and amplification in a large MIUC cohort correlates with low PD-L1 expression, a cold immune-phenotype and lack of response to anti-PD1. Others have demonstrated the significant role PPARG plays in immune modulation of the TME⁵. FX-909, a first-in-class covalent PPARG inverse agonist that will be evaluated in a Ph1 trial this year, will offer an opportunity to investigate the impact of PPARG inhibition in the TME of MIUC patients⁷. FX-909 combination with ICI agents potentially provides a "one-two punch" strategy to overcome resistance to immunotherapy in MIUC patients with high PPARG expression.

FIGURE 4. PPARG Amplification [CN >3] Correlates with Low Tumor Immune Cell Infiltration

Scan to View this Poster Abstract #537