Abstract #835: Characterization of the tumor immune microenvironment (TIME) and somatic landscape in gastrointestinal (GI) malignancies with *MTAP* deletions (del)

Jun Gong¹, Kristen Ciombor², Jennifer Valerin³, Minxuan Huang⁴, Edward Williams⁴, Melissa Stoppler⁴, Jacob Mercer⁴, John Strickler⁵

¹Cedars-Sinai Medical Center, Los Angeles, CA // ²Vanderbilt University Medical Center, Nashville, TN // ³University of California Irvine, CA // ⁴Tempus AI, Inc., Chicago, IL // ⁵Duke University, Durham, NC

Background

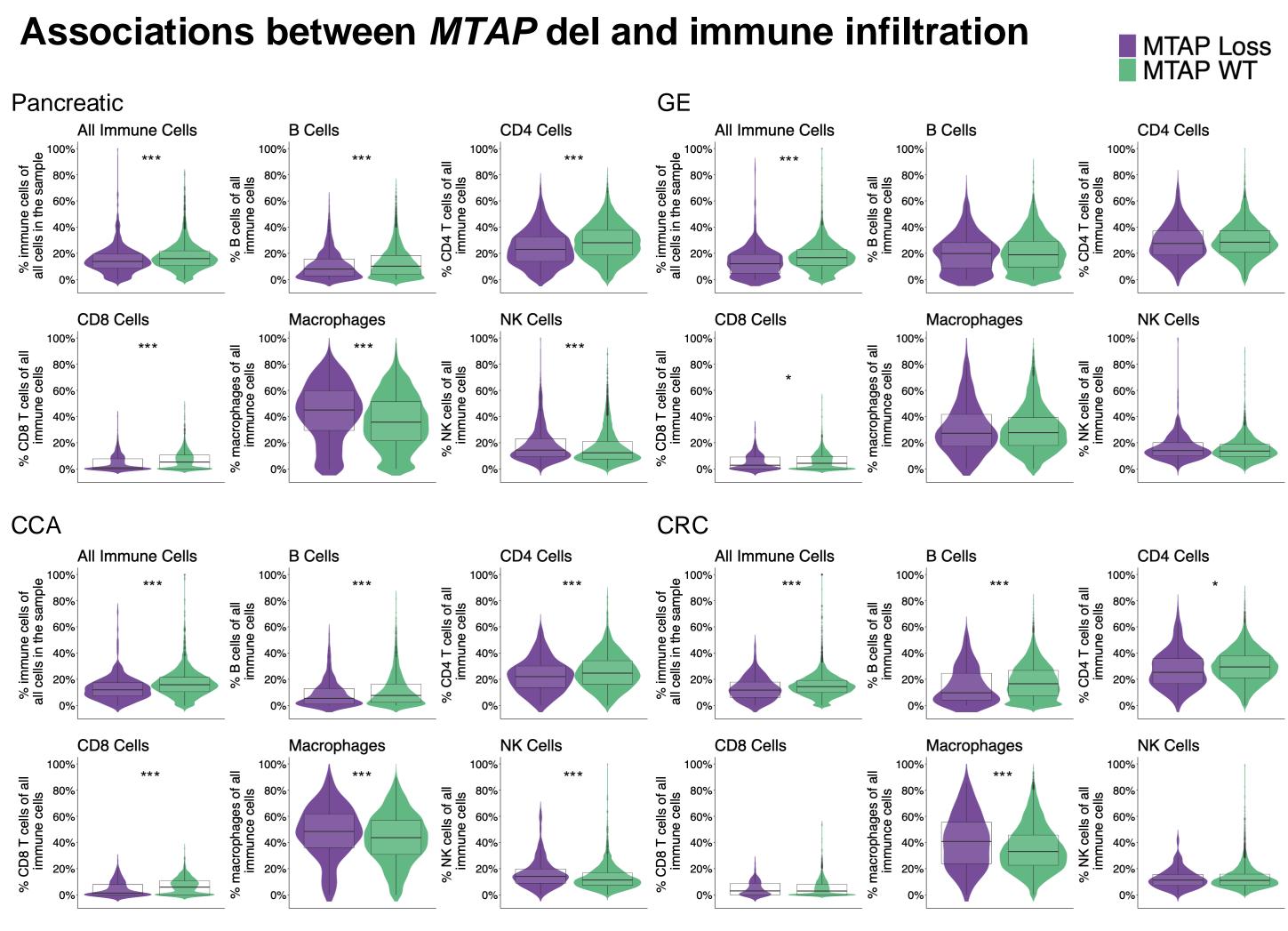
PRMT5 is a synthetic lethality target in patients (pts) with *MTAP* del and early phase trials of inhibitors are underway. *MTAP* del are also associated with a less immunogenic TIME and reduced efficacy of immunotherapy, but research in GI malignancies is scarce. Thus, we investigated the TIME and somatic landscape in GI malignancies with *MTAP* del.

Methods

From the Tempus Database, we retrospectively analyzed deidentified NGS data generated by the Tempus xT and xR assays from pts across GI malignancies, including pancreatic (n=11,217), gastroesophageal (GE, n=5,803), cholangiocarcinoma (CCA, n=3,244), and colorectal (CRC, n=17,537) cancers.

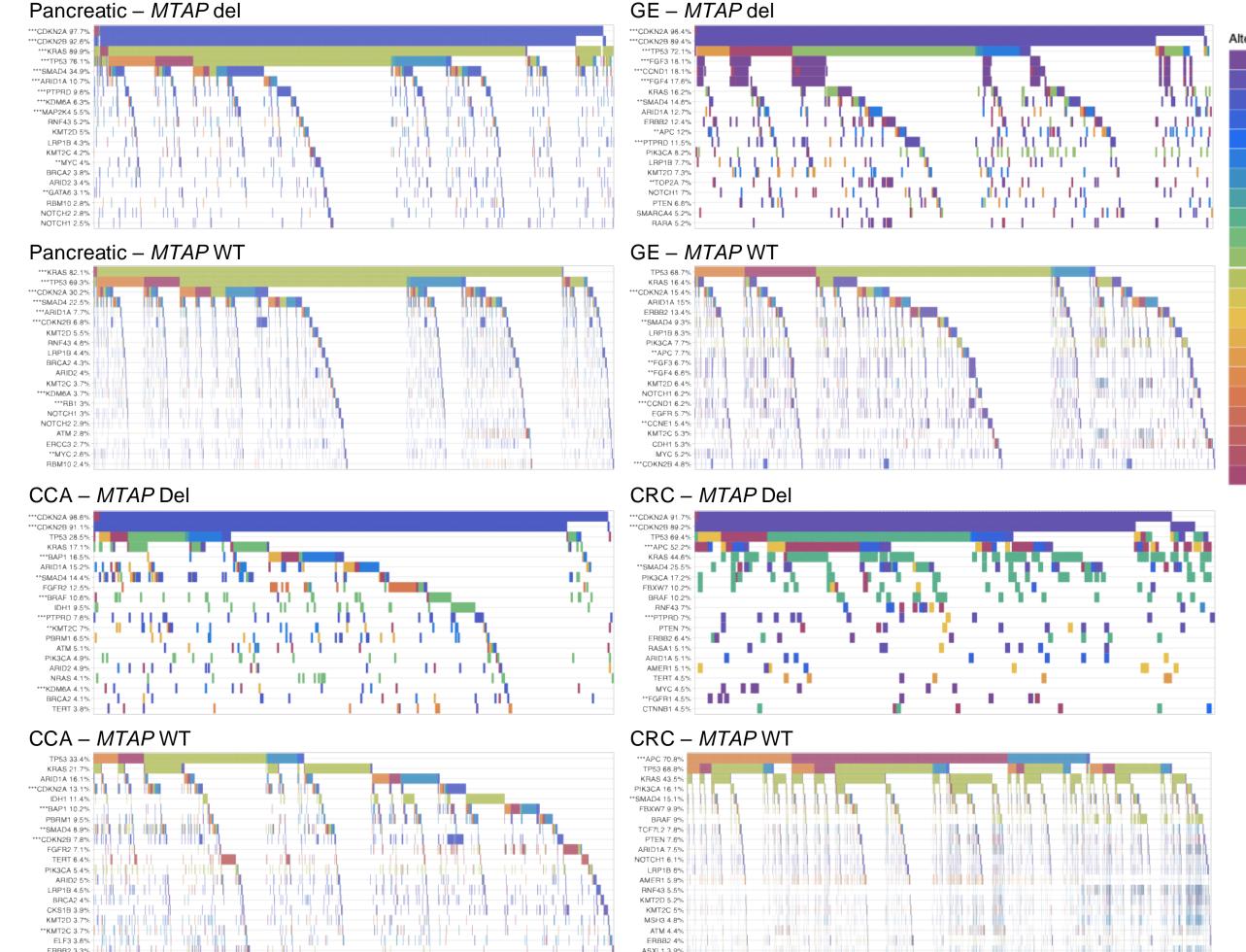
MTAP del were defined as two-copy losses. Somatic alterations (alts), immune cell infiltration predicted from gene expression patterns, PD-L1 from IHC, TMB, and MSI were evaluated. Fusions were only analyzed in pts with tumor cell content ≥30% to avoid any potential bias. Chi-squared/Fisher's Exact tests or Kruskal-Wallis tests were used to assess statistical significance (p<0.05, q<0.05 for false discovery rate correction for multiple testing).

Cohort Overview


Characteristic	Pancreatic (n=11,217)	GE (n=5,803)	CCA (n=3,244)	CRC (n=17,537)
Age at Dx, median (IQR)	67 (60, 74)*	65 (57, 73)*	66 (59, 73)	60 (51, 70)
Male, n (%)	5,965 (53)	4,327 (75%)	1,579 (49%)	9,926 (57%)
Female, n (%)	5,252 (47%)	1,476 (25%)	1,665 (51%)	7,611 (43%)
White, n (%)†	5,389 (81%)	2,607 (80%)	1,441 (80%)	7,858 (76%)
Black or African American, n (%) [†]	656 (9.9%)	279 (8.6%)	168 (9.3%)	1,294 (12%)
Other, n (%)†	344 (5.2%)	235 (7.2%)	114 (6.3%)	782 (7.6%)
Asian, n (%)†	235 (3.5%)	135 (4.1%)	87 (4.8%)	419 (4.0%)
MTAP del, n (%)	1,662 (14.8%)	426 (7.3%)	369 (11.4%)	157 (0.9%)
	<u> </u>			

^{*}P<0.05 by MTAP del status // †% of known data.

This is the largest analysis of the TIME and somatic landscape of MTAP loss across GI malignancies.


In pts with MTAP del and pancreatic cancer, CCA, and CRC, we observed a less immunogenic TIME pattern, indicating the evaluation of immunotherapy implications in these GI malignancies with MTAP del is warranted. Our findings are hypothesis-generating, providing further rationale to study synthetic lethality and novel combinatorial therapeutic strategies in GI malignancies with MTAP del.

Results/Graphs/Data

Figure 1. In pancreatic, CCA, and CRC pts, MTAP del was associated with a reduced proportion of B cells and CD4 T cells, and there were higher percentages of macrophages vs pts with MTAP WT status (p<0.001 for all). Reductions in proportion of CD8 T cells were also associated with MTAP del in pancreatic and CCA pts (p<0.001 for both). ***p<0.001, **p<0.005

Associations between MTAP del and Somatic Alterations Pancreatic – MTAP del GE – MTAP del

Figure 2. *SMAD4* alterations, a marker of reduced immune infiltrates, were more prevalent in pts with *MTAP* del across GI malignancies (q<0.005). In the CCA cohort, there was a higher percentage of *BRAF* alt and *FGFR2* fusions (*MTAP* del=13%, *MTAP* WT=8.7%, data not shown) in pts with *MTAP* loss (q<0.001, q=0.028), while *KRAS* alt were higher in pancreatic cases with *MTAP* loss (q<0.001). ***q≤0.001, **q≤0.01.